데이터 분산 문제 해결·연구 효율성 극대화 추진
한국제약바이오협회(회장 노연홍)는 17일 협회 4층 대강당에서 '연합학습 기반 신약개발 가속화 프로젝트 사업단(K-MELLODDY 사업단) 개소식'을 개최했다고 밝혔다.
과학기술정보통신부와 보건복지부가 공동으로 추진하는 연합학습 기반 신약개발 가속화 프로젝트(이하 프로젝트)는 2024년부터 5년간 348억원의 예산을 투입, 연합학습 기반 ADMET 예측 모델인 'FAM(Federated ADMET Model)'을 개발하는 것을 목표로 한다.
이번 프로젝트는 크게 ▲플랫폼 구축 ▲데이터 공급·활용 ▲AI 모델 개발 등으로 구분된다.
세부과제는 ▲연합학습 기반 FAM 운영 플랫폼을 구축하는 '플랫폼 구축 및 개발 1개 과제 ▲제약사, 병원, 연구소 등에 대한 데이터 공급 및 FAM을 활용한 '데이터 공급·활용 20개 과제', ▲FAM 솔루션과 응용 모델을 개발하는 AI 모델 개발 15개 과제로 구성된다.
이 프로젝트는 일회성 솔루션 구축이 아닌 데이터 추가를 통해 연속적으로, 자동적으로 성능이 개선된다는 장점이 있다는 게 사업단의 설명이다.
사업단은 FAM 솔루션 확보 이후 연합학습의 실용성을 검증하고 참여기관을 확대해나가는 동시에 신약개발 단계 적용 및 확장, 데이터 기여도 평가, 글로벌 협력 확대 등도 추진해나갈 예정이다.
노연홍 한국제약바이오협회장은 "우리의 목표는 연합학습 플랫폼을 통해 다기관의 ADMET 데이터를 수집, 고성능의 예측 도구를 개발해 비용효과성을 극대화하는 것"이라며 "이를 통해 6대 제약강국 도약에 한 발 더 다가서겠다"고 전했다.
이어 "우리의 노력이 결실을 맺고 사회에 긍정적인 변화를 가져올 것이라 확신하는 만큼, 성공적으로 프로젝트가 진행될 수 있도록 함께 노력해 나가기를 바란다"고 덧붙였다.
김화종 사업단장은 "신약 후보물질의 ADMET 값을 예측할 때 in-vitro(시험관) 시험 결과만으로는 in-vivo(비임상) 및 임상시험 통과를 보장하기 어렵고, 현재 학습용 데이터 부족으로 AI 활용 성능에도 한계가 있다"고 말했다.
김 사업단장은 "ADMET 예측 외에 특정 타겟과 상호작용, 약물 간 상호작용, 사용자 유형별 반응 예측, 다양한 독성 예측 등으로 확대 가능한 솔루션이 필요해 연합학습 기반의 ADMET 예측 모델인 'FAM 솔루션'을 개발하려는 것"이라고 설명했다.
FAM 솔루션은 기존의 다양한 상용 ADMET 예측 모델과는 다른 형태로, 다양한 시점에서 임상시험 통과를 예측할 수 있도록 모델을 개발해 AI의 활용 범위를 확대 가능할 전망이다.
이를 위해 사업단은 연합학습 기반의 신약개발 플랫폼을 구축하고, 산업, 학계, 연구기관, 병원 등에서 발생하는 데이터를 종합적으로 활용할 계획이다.
김 사업단장은 "연합학습 기술을 활용함으로써 개별 연구기관이나 기업이 독자적으로 수행하기 어려운 대규모 데이터 분석과 모델링 작업을 공동으로 수행할 수 있게 된다"면서 "이는 신약 개발의 효율성을 크게 향상시키며, 향후 신약 개발 프로세스에 혁신적인 변화를 가져올 것"이라고 강조했다.
연합학습 기반 신약개발 가속화 프로젝트 사업은 이번 사업단 개소식을 시작으로, 이달 중 보건복지부의 사업내용 설명회와 제1차 운영위원회가 개최된다.
이어 5월 세부사업 공고 후 사업단 홈페이지 구축, 설명회 개최, AI 분야 의견수렴 회의 등을 준비할 예정이다. 이어 오는 6월 세부 사업자를 선정하고 이르면 7월부터 1차년도 과제가 시작된다.
사업단은 "이번 프로젝트가 신약 개발의 속도와 효율성 개선에 크게 기여할 것"이라며 "많은 기관과 기업들의 참여를 희망한다"고 밝혔다.
한편 이날 개소식에는 한국제약바이오협회 노연홍 회장, 윤웅섭 이사장, 김화종 사업단장을 비롯해 보건복지부 권병기 첨단의료지원관, 과학기술정보통신부 황판식 기초원천연구정책관, 연합학습 기반 신약개발 가속화 프로젝트 사업 예종철 운영위원장, 한국보건산업진흥원 송태균 바이오헬스혁신본부장, 한국연구재단 오두병 신약단장 등이 참석했다.