개인정보 보호를 위한 비밀번호 변경안내 주기적인 비밀번호 변경으로 개인정보를 지켜주세요.
안전한 개인정보 보호를 위해 3개월마다 비밀번호를 변경해주세요.
※ 비밀번호는 마이페이지에서도 변경 가능합니다.
30일간 보이지 않기
  • 병·의원
  • 대학병원

한림대의료원, 낙상·욕창 실시간 예측 AI 개발

발행날짜: 2020-09-15 15:50:49

44만 건 데이터 머신러닝 기반 AI 모델이 의료행위별 낙창·욕상 발생확률 제시
예측값 따라 환자 특별 관리, 보호자 교육 등 낙상·욕창 예방 시스템 가동

좌측상단부터 시계방향 한림대성심병원, 한림대한강성심병원, 한림대동탄성심병원, 한림대춘천성심병원, 한림대강남성심병원
한림대학교의료원은 15일 입원환자의 낙상과 욕창 발생 가능성을 실시간으로 예측해주는 인공지능(AI) 모델을 개발했다고 밝혔다.

낙상, 욕창 등 병원 내 안전사고 예방을 위해 고안된 머신러닝 기반 AI 모델이 나온 것은 처음이다.

낙상과 욕창은 원내감염과 더불어 병원이 환자안전을 위해 가장 중요하게 여기는 부분이다. 이러한 안전사고는 질병의 치료 과정에서 환자의 회복과 예후에도 영향을 미치기 때문에 낙상과 욕창을 예방하면 전반적인 입원 생활의 질을 높이면서 비용은 크게 절감할 수 있다.

한림대의료원은 이번 AI 모델을 개발하기 위해 최근 5년간 낙상 데이터 16만 건, 최근 10년간 욕창 데이터 28만 건을 분석 및 가공하고 최적화된 머신러닝 알고리즘에 적용했다.

'낙상 위험 예측 AI 모델'에 사용된 데이터는 환자의 기본정보를 비롯해 낙상위험약품, 항응고제 투여 여부, 골다공증, 걸음걸이, 인지장애 등 20여 가지가 넘는다.

'욕창 위험 예측 AI 모델' 역시 감각인지, 습기, 활동 정도, 기동력, 영양상태, 마찰력·응전력, 헤모글로빈, 식이, 기저질환 등 20여 가지 이상의 데이터를 기반으로 머신러닝 과정을 거쳐 제작됐다.

기존에 사용하던 낙상, 욕창 예측 도구는 입원이나 수술 후 등 특정 시점에서나 환자의 낙상·욕창 발생률을 고·중·저 3단계로만 파악할 수 있었다. 반면 한림대의료원이 개발한 AI 모델의 가장 큰 특징은 '실시간 예측'이 가능하다는 것이다.

한림대의료원 이강일 의료정보팀장은 "병동 간호사들이 '처방전달시스템(OCS)'에서 환자 정보를 조회할 때 마다, AI 모델이 실시간으로 낙상·욕창 발생 가능성을 계산해 의료진에게 제시한다"면서 "입원환자에게 처방되는 약, 주사제, 처치, 처방변경 등 의료행위 하나하나에 실시간으로 변하는 낙상·욕창 발생률을 즉각적으로 확인할 수 있는데 의미가 있다"고 말했다.
댓글
새로고침
  • 최신순
  • 추천순
댓글운영규칙
댓글운영규칙
댓글은 로그인 후 댓글을 남기실 수 있으며 전체 아이디가 노출되지 않습니다.
ex) medi****** 아이디 앞 네자리 표기 이외 * 처리
댓글 삭제기준 다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입이 제한될 수 있습니다.
1. 저작권・인격권 등 타인의 권리를 침해하는 경우
2. 상용프로그램의 등록과 게재, 배포를 안내하는 게시물
3. 타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물
4. 욕설 및 비방, 음란성 댓글
더보기
이메일 무단수집 거부
메디칼타임즈 홈페이지에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 방법을 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반할 시에는 정보통신망법에 의해 형사 처벌될 수 있습니다.