개인정보 보호를 위한 비밀번호 변경안내 주기적인 비밀번호 변경으로 개인정보를 지켜주세요.
안전한 개인정보 보호를 위해 3개월마다 비밀번호를 변경해주세요.
※ 비밀번호는 마이페이지에서도 변경 가능합니다.
30일간 보이지 않기
  • 병·의원
  • 대학병원

수만장 소장 캡슐내시경 영상 AI로 판독…96% 정확도

발행날짜: 2021-02-16 12:00:09

여의도성모 이한희 교수팀, 딥러닝 알고리즘 기반한 연구 결과
소장 병변 판독 정확도 상당…"판독 장시간 걸리는 문제 해결"

국내 연구진이 소장 캡슐 내시경 영상 판독을 위한 딥러닝 알고리즘을 개발, 96%이상의 높은 판독 정확도를 기록했다.

왼쪽부터 가톨릭대 여의도성모병원 이한희 교수, 서울성모병원 이보인 교수, 포스텍 산업인공지능연구소 이승철 교수
가톨릭대 여의도성모병원 이한희 교수 연구팀(서올성모병원 소화기내과 이보인 교수, 포항공대 산업인공지능연구소 이승철 교수)은 16일 영상 판독 딥러닝 알고리즘을 개발해 판독 정확도를 비교 분석한 결과를 공개했다.

캡슐내시경은 알약 모양의 캡슐을 입으로 삼켜 식도, 위장, 소장 등의 건강 상태를 촬영하고 이 영상을 분석, 판독해 소화기 질환 진단에 이용하는 기기다. 일반 내시경이 들어가기 힘든 소장을 관찰할 수 있어 원인 모를 복통, 설사, 출혈 및 빈혈의 원인, 용종, 궤양, 크론병과 소장종양 등 다양한 질환의 진단에 활용되고 있다.

하지만 캡슐내시경은 수 만장의 영상을 의사가 일일이 판독하는데 1~2시간의 소요되는 문제가 존재했다. 또한 병변이 작거나 찍힌 영상 숫자가 적을 경우 판독자에 따라 진단 정확도가 떨어진다.

이에 따라 연구팀은 2007년 5월부터 2019년 5월까지 시행된 526건의 소장 캡슐내시경 검사에서 7556장의 영상을 추출, 추출된 영상을 대표적인 소장 병변인 ▲출혈성 병변(적색 점, 혈관이형성, 현성 출혈), ▲궤양성 병변(미란, 궤양, 협착)으로 분류했다.

영상 분석 특화 딥러닝 기법 중 하나인 VGGNet 기반의 컨벌루션 신경망(Convolutional Neural Networks, CNN) 알고리즘으로 영상을 분류하고 학습시켰다.

학습 단계에서는 출혈 및 궤양 병변을 개별적으로 학습시키는 합성모델(Combined model), 전체 영상을 정상‧비정상으로만 나눠 학습시키는 이분형모델(Binary model)의 두 가지 방법으로 진행했다.

분석 결과 두 모델 모두 96%이상의 높은 정확도를 보였으며 특히 합성모델은 이분형모델에 비해 높은 민감도, 즉 소장 병변을 더 잘 발견하는 것으로 나타났다.

영상판독 이미지.
또한 Grad-CAM을 통해 해당 병변을 정확히 시각화 하는 것에서도 합성 모델이 좀 더 우수한 것으로 나타났다.

이한희 교수(제1저자)는 "이번 소장 캡슐 내시경 판독 알고리즘 개발로 인간보다 빠르고 정확하게 소장 병변을 파악할 수 있으며, 소장의 정상, 비정상 분류를 넘어 개별 병변의 특성을 판단하고 시각화된 병변의 위치를 확인함으로써 판독된 영상의 2차 검증이 가능할 것으로 기대된다"고 밝혔다.

이어 "향후 실제 임상에서의 효용성을 평가하기 위해 전향적 연구 진행과 첨단 의료기기로서의 상용화를 목표로 포스텍과의 공동연구를 계속 추진할 예정"이라고 밝혔다.

한편, 한국연구재단 임상의과학자 연구역량강화 사업 지원을 받은 이번 연구는 '다이제스티브 엔도스코피(Digestive Endoscopy. IF=4.774) 2020년 8월호 온라인판에 게재됐다.
댓글
새로고침
  • 최신순
  • 추천순
댓글운영규칙
댓글운영규칙
댓글은 로그인 후 댓글을 남기실 수 있으며 전체 아이디가 노출되지 않습니다.
ex) medi****** 아이디 앞 네자리 표기 이외 * 처리
댓글 삭제기준 다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입이 제한될 수 있습니다.
1. 저작권・인격권 등 타인의 권리를 침해하는 경우
2. 상용프로그램의 등록과 게재, 배포를 안내하는 게시물
3. 타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물
4. 욕설 및 비방, 음란성 댓글
더보기
이메일 무단수집 거부
메디칼타임즈 홈페이지에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 방법을 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반할 시에는 정보통신망법에 의해 형사 처벌될 수 있습니다.