국내 의료진이 인공지능(AI)을 활용해 폐쇄성 수면무호흡 수술 성공률을 예측할 수 있는 진단방법을 개발해 주목된다.
서울대병원은 15일 이비인후과 김현직 교수와 동국대병원 김진엽 교수팀은 머신러닝으로 폐쇄성 수면무호흡 수술 성공을 예측할 수 있는 알고리즘을 개발했다고 발표했다.
지난 2010~2019년 수면무호흡 수술을 받은 환자 163명이 연구대상이었다.
연구팀은 수술 전후에 시행한 수면다원검사 결과를 토대로 수술 성공률을 분석했고, 수술 전 인공지능 프로그램 예측과 비교했다. 그 결과 인공지능으로 예측한 성공률은 실제 수술 성공률과 70%를 상회하는 일치도를 보였다.
수면다원검사와 양압기 치료의 건강보험 적용으로 폐쇄성 수면무호흡으로 진단받고 양압기를 이용해 치료받는 환자가 가파르게 증가하고 있다.
폐쇄성 수면무호흡의 수술적 치료는 성공률이 중요하다. 서울대병원의 경우 약 70%라고 조사됐다. 그 때문에 수술 성공률이 높은 환자를 수술 전에 구별하는 것이 중요하지만 해부·생리학적 인자들을 모두 고려해야 하므로 예측이 쉽지 않다. 전통적인 예측모델이나 수술을 시행하는 의사의 주관적 성공률 예측은 정확도가 각각 54.2%, 52.2%로 낮았다.
연구팀은 연령, 편도선 크기, BMI, 수면 시간 등 결과 예측에 기여하는 다양한 인자를 조합해 서포트벡터머신(support vector machine), 랜덤 포레스트(random forest), 그래디언트 부스팅(gradient boosting) 등 세 가지 인공지능 모델을 해당 연구에 적용했다.
이중 그래디언트 부스팅 모델은 정확도는 70.8%로 기존의 예측 방법보다 월등히 정확도가 높은 것으로 판명됐다.
이비인후과 김현직 교수는 "폐쇄성 수면무호흡 수술의 적절한 환자 선택은 중요하지만 성공 예측이 어려운 과제인데, 인공지능이 정확성을 높일 수 있다"면서 "인공지능은 스스로 학습을 해서 알고리즘을 발달시킨다. 분석대상이 많아지면 현재의 정확도는 더 높아지고 최적의 치료방법을 찾는데 도움이 될 것"이라고 말했다.
이번 연구는 네이처 자매 국제 학술지 ‘사이언티픽 리포트'(Scientific Report) 최근호에 게재됐다.
댓글은 로그인 후 댓글을 남기실 수 있으며 전체 아이디가 노출되지 않습니다. ex) medi****** 아이디 앞 네자리 표기 이외 * 처리 댓글 삭제기준
다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입이 제한될 수 있습니다.
1. 저작권・인격권 등 타인의 권리를 침해하는 경우
2. 상용프로그램의 등록과 게재, 배포를 안내하는 게시물
3. 타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물
4. 욕설 및 비방, 음란성 댓글
ex) medi****** 아이디 앞 네자리 표기 이외 * 처리
댓글 삭제기준 다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입이 제한될 수 있습니다.
1. 저작권・인격권 등 타인의 권리를 침해하는 경우
2. 상용프로그램의 등록과 게재, 배포를 안내하는 게시물
3. 타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물
4. 욕설 및 비방, 음란성 댓글