개인정보 보호를 위한 비밀번호 변경안내 주기적인 비밀번호 변경으로 개인정보를 지켜주세요.
안전한 개인정보 보호를 위해 3개월마다 비밀번호를 변경해주세요.
※ 비밀번호는 마이페이지에서도 변경 가능합니다.
30일간 보이지 않기
  • 학술
  • 연구・저널

서울대병원, 렘수면행동장애 환자 치매·파킨슨병 예측

발행날짜: 2024-04-02 11:46:58

신경퇴행성질환 예측하는 뇌파 기반 머신러닝 모델 설계
발병시기 유형예측 정확도 우수…예후 개선 효과 기대

렘수면행동장애 치료의 난제로 여겨졌던 신경퇴행성질환 발병을 예측할 실마리가 제시됐다. 국내 연구진이 렘수면행동장애 환자의 '뇌파'를 이용해 치매와 파킨슨병을 예측하는 머신러닝 모델을 개발하고, 예측력을 검증한 결과가 나왔다.

서울대병원 정기영·김한준 교수(신경과)와 강동경희대병원 변정익 교수 공동연구팀이 렘수면행동장애 환자의 뇌파를 활용해 신경퇴행성질환 발병 시기와 유형을 예측하는 머신러닝 모델을 개발했다고 2일 발표했다.

사진 왼쪽부터 서울대병원 신경과 정기영·김한준 교수, 강동경희대병원 변정익 교수

노인성 잠꼬대로도 불리는 렘수면행동장애는 꿈속의 행동이 현실로 표출되면서 자는 동안 소리를 지르거나 몸부림치는 행동이 나타나는 수면장애다. 매년 렘수면행동장애 환자의 6%는 치매, 파킨슨병 등 '신경퇴행성질환'으로 진행된다고 알려졌는데 언제, 어떤 유형으로 발병할지는 예측하기 어려웠다.

연구팀은 먼저 서울대병원에서 수면다원검사를 받은 렘수면장애 환자 233명을 최대 9년간 추적 관찰해 신경퇴행성질환 발병군과 미발병군으로 구분하고, 이들의 뇌파 특성을 비교분석했다.

이후 신경퇴행성질환 발병과 연관된 뇌파를 사용하여 첫 신경퇴행성질환 발병까지 걸린 시간을 예측하는 머신러닝 모델을 설계했다. 테스트 결과, 예측 성능을 나타내는 IBS(낮을수록 우수)와 C-index(높을수록 우수) 수치는 각각 0.113, 0.721로 우수했다.

추가로 연구팀은 발병군의 뇌파만 분석하여 렘수면행동장애가 '치매(인지기능 이상)' 또는 '파킨슨병(운동기능 이상)' 중 어느 유형으로 진행할지 분류하는 머신러닝 모델도 설계했다. 그 결과, 예측 성능을 나타내는 AUROC(곡선아래면적) 수치는 0.901로 우수한 것으로 나타났다.

신경퇴행성질환 발병 시기 및 유형 예측 머신러닝 모델은 공통적으로 ‘뇌파 둔화’ 관련된 특성의 중요성이 높았다. 뇌파는 저주파(델타파, 세타파)가 증가하거나 고주파(감마파, 베타파)가 감소할 경우 둔화된다.

신경퇴행성질환 ‘발병군’은 미발병군보다 뇌파가 둔화되었고, 발병군 중에서는 ‘치매’가 파킨슨병보다 뇌파가 둔화되는 양상을 보였다. 뇌파검사로 확인된 느린 뇌파 양상은 신경퇴행의 시작을 의미하므로, 주의가 필요하다는 것이 연구팀의 설명이다.

이 연구 결과는 대규모 코호트에서 ‘뇌파’를 활용하여 예측하기 어려웠던 렘수면행동장애 환자의 예후를 일찍이 파악할 수 있다는 가능성을 제시해 의미가 크다고 연구팀은 강조했다.

정기영 교수는 "이번 연구에서 인공지능 기술 기반으로 개발된 신경퇴행성질환 예측 모델을 활용하면 의료진은 렘수면행동장애 환자 중 치료가 필요한 대상을 조기 선별하고, 환자는 맞춤형 진료를 받을 수 있을 것으로 기대된다"고 말했다.

한편, 이번 연구는 한국연구재단 지원으로 수행됐으며 국제학술지 '수면(SLEEP)'최근호에 게재됐다.​​

댓글
새로고침
  • 최신순
  • 추천순
댓글운영규칙
댓글운영규칙
댓글은 로그인 후 댓글을 남기실 수 있으며 전체 아이디가 노출되지 않습니다.
ex) medi****** 아이디 앞 네자리 표기 이외 * 처리
댓글 삭제기준 다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입이 제한될 수 있습니다.
1. 저작권・인격권 등 타인의 권리를 침해하는 경우
2. 상용프로그램의 등록과 게재, 배포를 안내하는 게시물
3. 타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물
4. 욕설 및 비방, 음란성 댓글
더보기
이메일 무단수집 거부
메디칼타임즈 홈페이지에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 방법을 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반할 시에는 정보통신망법에 의해 형사 처벌될 수 있습니다.